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A generalized formula to predict the direction of an equilibrium shift, ∂2f

∂ξ2
∂ξ

∂t

∂

∂ξ

(
∂f

∂t

)
<

0, is presented, where ξ is the extent of the reaction, t is the characteristic variable to
affect an equilibrium and f is the characteristic function whose partial differential with
respect to ξ can be used as an equilibrium criterion. When the stable equilibrium of
a thermodynamic system is disturbed on condition that f exhibits a minimum with
respect to ξ , the equilibrium will shift in the direction to resist the increase of f if
the disturbance make f increase; however, the equilibrium will shift in the direction to
accelerate the decrease of f if the disturbance make f decrease to minimize f . On con-
dition that f exhibits a maximum with respect to ξ , the equilibrium will shift in the
direction to resist the decrease of f if the disturbance make f decrease; however, the
equilibrium will shift in the direction to accelerate the increase of f if the disturbance
make f increase to maximize f . On the other hand, Le Chatalier’s Principle is not con-
sistent with the real situations under certain circumstances.

KEY WORDS: equilibrium shift, Le Chatalier’s principle, generalized formula

1. Introduction

The general principle governing all changes and their affects is Le Chat-
alier’s Principle: if a change of conditions (stress) is applied to an equilibrium
system, the system will respond to reduce the stress. But the principle is not con-
sistent with the real situations under certain circumstances. Thus author educes
a generalized formula predicting the direction of an equilibrium shift according
to the character of characteristic function in thermodynamics.

2. The formulae to predict the direction of equilibrium shift for several
particular cases

2.1. The case for isothermal and isobaric reaction

In homogeneous system with k components, when a chemical reaction is
at equilibrium on isothermal and isobaric condition, the partial differential of
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Gibbs free energy G with respect to ξ is equal to 0, viz.
(

∂G
∂ξ

)

T ,p
= 0; when the

equilibrium shifts, d
(

∂G
∂ξ

)

T ,p
= 0, viz.

d
(

∂G

∂ξ

)

T ,p

=
[

∂

∂T

(
∂G

∂ξ

)

T ,p

]

p

dT +
[

∂

∂p

(
∂G

∂ξ

)

T ,p

]

T

dp

+
∑

i

[
∂

∂ni

(
∂G

∂ξ

)

T ,p

]

T ,p,nj

dni = 0 (1)

Changing the order of the partial differential in equation (1), we obtain

d
(

∂G

∂ξ

)

T ,p

=
[

∂

∂ξ

(
∂G

∂T

)

p

]

T ,p

dT +
[

∂

∂ξ

(
∂G

∂p

)

T

]

T ,p

dp

+
∑

i

[
∂

∂ξ

(
∂G

∂ni

)

T ,p,nj

]

T ,p

dni = 0

viz.

−
(

∂S

∂ξ

)

T ,p

dT +
(

∂V

∂ξ

)

T ,p

dp +
∑

i

(
∂µi

∂ξ

)

T ,p

dni = 0. (2)

Owing to
(

∂G

∂ξ

)

T ,p

=
(

∂H

∂ξ

)

T ,p

− T

(
∂S

∂ξ

)

T ,p

= 0 (3)

at equilibrium, so by equation (3), equation (2) can be rewritten as

− 1
T

(
∂H

∂ξ

)

T ,p

dT +
(

∂V

∂ξ

)

T ,p

dp +
∑

i

(
∂µi

∂ξ

)

T ,p

(dn0
i + νidξ) = 0

viz.
(

∂2G

∂ξ 2

)

T ,p

dξ = �H

T
dT −�V dp −

∑

i

�µidn0
i , (4)

where �H =
(

∂H
∂ξ

)

T ,p
is heat of reaction at isothermal and isobaric condition,

�V =
(

∂V
∂ξ

)

T ,p
is the change of volume; �µi =

(
∂µi

∂ξ

)

T ,p
is the change of chem-

ical potential. From equation (4) we obtain
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(
∂ξ

∂T

)

p

= �H

T

/(
∂2G

∂ξ 2

)

T ,p

, (5)

(
∂ξ

∂p

)

T

= −�V

/(
∂2G

∂ξ 2

)

T ,p

, (6)

(
∂ξ

∂n0
i

)

T ,p,n0
j

= −�µi

/(
∂2G

∂ξ 2

)

T ,p

. (7)

If the equilibrium is stable, Gibbs free energy G exhibits a minimum with respect
to ξ at equilibrium, viz.

(
∂2G
∂ξ 2

)

T ,p
>0. Thus by equations (5)–(7) we know that an

equilibrium will shift in the direction the reaction is endothermic when tempera-
ture increases, in the direction the volume is reductive when pressure increases
and in the direction the chemical potential of substance i is descendent when
substance i increases.

Above the direction of the equilibrium shift may be expressed by a set of
inequality. Two side of equation (5) multiplied by �H is

(
∂ξ

∂T

)

p

�H > 0 or −
(

∂ξ

∂T

)

p

�S < 0 (8)

Analogously
(

∂ξ

∂p

)

T

�V < 0
(

∂ξ

∂n0
i

)

T ,p,n0
j

�µi < 0. (9)

Let tn denote variable T , p and n0
i (i = 1, 2, . . . , k), then the second formula in

equations (8) and (9) can be rewritten as together expressions:

∂ξ

∂tn

∂�G

∂tn
< 0, (10)

where �G =
(

∂G
∂ξ

)

T ,p
. The physical meaning of equation (10) can be understood

like this: let tn increase ∂tn > 0, if an equilibrium shift rightward, viz. ∂ξ > 0,
then ∂�G

∂tn
< 0, viz. ∂(�G) < 0, or ∂(�G) = (�G)2 − (�G)1 = (�G)2 − 0 =

(�G)2 < 0. The meaning of this result is very obvious, because when
(

∂G
∂ξ

)

T ,p
<

0, an equilibrium shift rightward.
Equation (10) can be also rewritten as

∂ξ

∂tn

[
∂

∂ξ

(
∂G

∂tn

)]

T ,p

< 0. (11)
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By equation (11) we know that an equilibrium will shift in the direction the
change rate of G with respect to tn decreases when tn increases. This is intelli-
gible. If the change rate of G with respect to tn is positive, the decrease of the
change rate of G with respect to tn may make the increase of G with respect to
tn less, viz. the increase of G is resisted; if the change rate of G with respect to
tn is negative, the decrease of the change rate of G with respect to tn may make
the decrease of G with respect to tn more, viz. the decrease of G is accelerated
to minimize G.

Equation (11) indicate that when an chemical equilibrium is disturbed, the
system always attempt to minimize G, namely an equilibrium will shift in the
direction the increase of G is resisted if the disturbance make G increase; or an
equilibrium will shift in the direction the decrease of G is accelerated if the dis-
turbance make G decrease.

The conclusion of equation (10) may also obtained from another angle.
Due to

dG = −S dT + V dp +
∑

i

µidni

= −S dT + V dp +
∑

i

µid
(
n0

i + νiξ
)

= −S dT + V dp +
∑

i

µidn0
i +

∑

i

µiνidξ (12)

and
∑

i µiνi = 0 at equilibrium, so equation (12) becomes

dG = −S dT + V dp +
∑

i

µidn0
i . (13)

From equation (13) we obtain
(

∂G

∂T

)

p,n0
1,n

0
2,...

= −S,

(
∂G

∂p

)

T ,n0
1,n

0
2,...

= V ,

(
∂G

∂n0
i

)

T ,p,n0
j

= µi. (14)

Although absolute value of S is unknown, by the first formula in equation
(14) we may confirm that the larger algebraic value of S is the better to make
Gibbs free energy of the system as small as possible. Because when temperature
increases, the larger S is, the more Gibbs free energy decreases if S > 0; or
the less Gibbs free energy increases if S < 0. Thus the equilibrium will shift
in the direction S is increscent when temperature increases. The direction S is
increscent is the direction the reaction is endothermic. Thus an equilibrium will
shift in the direction the reaction is endothermic when temperature increases.
By the second formula in equation (14) we know that the smaller V is, the less
Gibbs free energy increases when pressure increases. Thus an equilibrium will
shift in the direction volume is reductive when pressure increases. By the third
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formula in equation (14) we know that the smaller algebraic value of µi is, the
less Gibbs free energy increases when n0

i increases. So an equilibrium will shift in
the direction the chemical potential of substance i is descendent when substance
i increase.

2.2. The case for isothermal and isochoric reaction

In homogeneous system with k components, when a chemical reaction is
at equilibrium on isothermal and isochoric condition, the partial differential of
Helmholz free energy F with respect to ξ is equal to 0, viz.

(
∂F
∂ξ

)

T ,V
= 0; when

an equilibrium shift, d
(

∂F
∂ξ

)

T ,V
= 0, viz.

d
(

∂F

∂ξ

)

T ,V

=
[

∂

∂T

(
∂F

∂ξ

)

T ,V

]

V

dT +
[

∂

∂V

(
∂F

∂ξ

)

T ,V

]

T

dV

+
∑

i

[
∂

∂ni

(
∂F

∂ξ

)

T ,V

]

T ,V,nj

dni = 0. (15)

Analogously we obtain
(

∂2F

∂ξ 2

)

T ,V

dξ = �U

T
dT +�p dV −

∑

i

�µidn0
i , (16)

where �U =
(

∂U
∂ξ

)

T ,V
is heat of reaction at isothermal and isochoric condition,

�p =
(

∂p

∂ξ

)

T ,V
is the change of the pressure; �µi =

(
∂µi

∂ξ

)

T ,V
is the change of

chemical potential. From equation (16) we obtain

(
∂ξ

∂T

)

V

= �U

T

/(
∂2F

∂ξ 2

)

T ,V

, (17)

(
∂ξ

∂V

)

T

= �p

/(
∂2F

∂ξ 2

)

T ,V

, (18)

(
∂ξ

∂n0
i

)

T ,V,n0
j

= −�µi

/(
∂2F

∂ξ 2

)

T ,V

. (19)

If the equilibrium is stable, Helmholz free energy F exhibits a minimum with
respect to ξ at equilibrium, viz.

(
∂2F
∂ξ 2

)

T ,V
> 0. Thus by equations (17)–(19)

we know that an equilibrium will shift in the direction reaction is endothermic
when temperature increases, in the direction pressure is increscent when volume
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increases and in the direction chemical potential of substance i is descendent
when substance i increases.

Above the direction of the equilibrium shift may be also expressed by a set
of inequality:

−
(

∂ξ

∂T

)

V

�S < 0, −
(

∂ξ

∂V

)

T

�p < 0,

(
∂ξ

∂n0
i

)

T ,V,n0
j

�µi < 0. (20)

Let tn denote variable T , V and n0
i (i = 1, 2, . . . , k), then equation (20) can be

also rewritten as together expressions:

∂ξ

∂tn

∂�F

∂tn
< 0, (21)

where �F =
(

∂F
∂ξ

)

T ,V
. Equation (21) can be also rewritten as

∂ξ

∂tn

[
∂

∂ξ

(
∂F

∂tn

)]

T ,V

< 0. (22)

We may also discuss equation (22) as if we discussed equation (11).
The conclusions deduced from equation (21) may be also obtained from

another angle. Due to

dF = −S dT − p dV +
∑

i

µidni

= −S dT − p dV +
∑

i

µid
(
n0

i + νiξ
)

= −S dT − p dV +
∑

i

µidn0
i +

∑

i

µiνidξ (23)

and
∑

i µiνi = 0 at equilibrium, so equation (23) becomes

dF = −S dT − p dV +
∑

i

µidn0
i . (24)

From equation (24) we obtain

(
∂F

∂T

)

V,n0
1,n

0
2,...

= −S,

(
∂F

∂V

)

T ,n0
1,n

0
2,...

= −p,

(
∂F

∂n0
i

)

T ,V,n0
j

= µi. (25)

We may also discuss equation (25) as if we discussed equation (14).
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3. The formula to predict the direction of equilibrium shift for generalized cases

Now we educe generalized form of equations (11) and (22). Supposing the
characteristic function f , whose partial differential with respect to ξ can be used
as an equilibrium criterion, can be shown as

f = f (t1, t2, . . . , tn, . . . , ξ) (26)

where t1, t2, . . . , tn, . . ., which are characteristic variable to affect an equilibrium,
are regarded as parameters and ξ , which is the extent of the reaction, is regarded
as variable. f has extreme value with respect to ξ at equilibrium, viz.

∂f

∂ξ
= g(t1, t2, . . . , tn, . . . , ξ) = 0. (27)

The extreme point ξ is able to be found by equation (27):

ξ = ξ(t1, t2, . . . , tn, . . .). (28)

Now we investigate the influence of parameters t1, t2, . . . , tn, . . . on the extreme
point of f . Therefore, differentiating equation (26) we obtain

∂f

∂tn
=

(
∂f

∂tn

)

ξ

+ ∂f

∂ξ

∂ξ

∂tn
. (29)

Substituting equation (27) into (29) we obtain

∂f

∂tn
=

(
∂f

∂tn

)

ξ

. (30)

Differentiating equation (27) we obtain

d
∂f

∂ξ
=

∑

n

(
∂g

∂tn

)

ξ

dtn + ∂g

∂ξ
dξ = 0 (31)

viz.

∂g

∂ξ
dξ = −

∑

n

(
∂g

∂tn

)

ξ

dtn or
∂2f

∂ξ 2
dξ = −

∑

n

∂2f

∂tn∂ξ
dtn. (32)

From equation (32) we obtain

∂2f

∂ξ 2

∂ξ

∂tn
= − ∂2f

∂tn∂ξ
. (33)

Two side of equation (33) multiplied by ∂2f

∂tn∂ξ
is

∂2f

∂ξ 2

∂ξ

∂tn

∂2f

∂tn∂ξ
= −

(
∂2f

∂tn∂ξ

)2

. (34)
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We obtain from equation (34)

∂2f

∂ξ 2

∂ξ

∂tn

∂2f

∂tn∂ξ
< 0 or

∂2f

∂ξ 2

∂ξ

∂tn

∂

∂ξ

(
∂f

∂tn

)

ξ

< 0. (35)

Substituting equation (30) into equation (35) we obtain

∂2f

∂ξ 2

∂ξ

∂tn

∂

∂ξ

(
∂f

∂tn

)
< 0. (36)

This is just the generalized formula to predict the direction of an equilibrium
shift. There are two ∂tn in equation (36), and there are two ∂ξ besides ∂ξ in
∂2f

∂ξ 2 , hence when a thermodynamic system arrive at the stable equilibrium, if f

exhibits a minimum with respect to ξ
(

∂2f

∂ξ 2 > 0
)

, then when the equilibrium is
disturbed, by equation (36) we always obtain ∂(∂f ) < 0 whether the distur-
bance ∂tn is positive or negative, and whether the disturbance make the equi-
librium shift rightward (∂ξ > 0) or leftward (∂ξ < 0). This means that if the
disturbance makes f increase, viz. ∂f > 0, the equilibrium will shift in the
direction to resist the increase of f ; if the disturbance makes f decrease, viz.
∂f < 0, the equilibrium will shift in the direction to accelerate the decrease of
f to minimize f . For example, Gibbs free energy function G(T , p, ξ, n0

1, n
0
2, . . . ),

Helmholz free energy function F(T , V, ξ, n0
1, n

0
2, . . . ), internal energy function

U(S, V, ξ, n0
1, n

0
2, . . . ) and enthalpy function H(S, p, ξ, n0

1, n
0
2, . . . ) is just such

function.
If f exhibits a maximum with respect to ξ

(
∂2f

∂ξ 2 < 0
)

, then when the equi-
librium is disturbed, by equation (36) we always obtain ∂(∂f ) > 0. This means
that if the disturbance makes f increase, the equilibrium will shift in the direc-
tion to accelerate the increase of f ; if the disturbance makes f decrease, the
equilibrium will shift in the direction to resist the decrease of f to maximize f .
For example, entropy function S(U, V, ξ, n0

1, n
0
2, . . . ) is just such function.

The part after the first factor in equation (36) relate to the concavity of the
curve f − tn, this can be proved as follows: when only tn changes, we have

df =
(

∂f

∂tn

)

ξ

dtn + ∂f

∂ξ
dξ. (37)

Differentiating equation (37), we obtain

d2
f = d

(
∂f

∂tn

)

ξ

dtn + d
∂f

∂ξ
dξ, (38)

d ∂f

∂ξ
= 0 at equilibrium point, so equation (38) becomes

d2
f = d

(
∂f

∂tn

)

ξ

dtn =
(

∂2f

∂t2
n

)

ξ

dt2
n + ∂2f

∂tn∂ξ
dtndξ. (39)
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G

p

Figure 1. The equilibrium will shift in the direction to resist the increase of Gibbs free energy when
the pressure increases.

Dividing into equation (39) by dt2
n , we obtain

∂2f

∂t2
n

=
(

∂2f

∂t2
n

)

ξ

+ ∂2f

∂tn∂ξ

∂ξ

∂tn
=

(
∂2f

∂t2
n

)

ξ

+ ∂ξ

∂tn

∂

∂ξ

(
∂f

∂tn

)
. (40)

The left side of equation (40) denotes the concavity of the curve f − tn when an
equilibrium shifts, the first term on the right of equation (40) denotes the con-
cavity of the curve f − tn when an equilibrium does not shift, so the second term
on the right of equation (40) denotes the influence of an equilibrium shift on the
concavity of the curve f − tn. Thus we have proved above proposition.

Now we discuss the change of Gibbs free energy with the pressure p when
equilibrium does not shift and equilibrium shifts. Due to

(
∂G
∂p

)

T ,ξ
= V > 0,

(
∂2G/∂p2

)
T ,ξ

= (∂V /∂p)T,ξ < 0. So when equilibrium does not shift, the G − p

curve can be shown by broken line in figure 1.
If f shows Gibbs free energy, tn shows pressure, then equation (40) becomes

(
∂2G

∂p2

)

T

=
(

∂2G

∂p2

)

T ,ξ

+
(

∂ξ

∂p

)

T

∂

∂ξ

(
∂G

∂p

)

=
(

∂2G

∂p2

)

T ,ξ

+
(

∂ξ

∂p

)

T

(
∂V

∂ξ

)

T ,p

. (41)

Equation (36) becomes
(

∂2G

∂ξ 2

)

T ,p

(
∂ξ

∂p

)

T

∂

∂ξ

(
∂G

∂p

)

T

< 0
(

∂2G

∂ξ 2

)

T ,p

(
∂ξ

∂p

)

T

(
∂V

∂ξ

)

T ,p

< 0. (42)

Owing to
(

∂2G
∂ξ 2

)

T ,p
> 0, so by equation (42) we know that the second term on

the right of equation (41)
(

∂ξ

∂p

)

T

(
∂V
∂ξ

)

T ,p
< 0 [this is actually the first formula in
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F

V

Figure 2. The equilibrium will shift in the direction to accelerate the decrease of Helmholz free
energy when the volume increases.

equation (9)]. So by equation (41) we know that
(

∂2G
∂p2

)

T
<

(
∂2G
∂p2

)

T ,ξ
. Again from

equation (30) we obtain
(

∂G
∂p

)

T
=

(
∂G
∂p

)

T ,ξ
= V > 0. So when equilibrium shifts,

G − p curve can be shown by the real line in figure 1.
Under definite pressure, the change of Gibbs free energy from the broken

line to the real line in figure 1 is just the change of Gibbs free energy of the sys-
tem during the process of isothermal and isobaric reaction (it is negative). By fig-
ure 1 we know that Gibbs free energy of a system increases with the increase of
pressure, and the equilibrium shift in the direction to resist the increase of Gibbs
free energy when the pressure increases.

Now we discuss the change of Helmholz free energy with the volume V

when equilibrium does not shift and equilibrium shifts. Due to
(

∂F
∂V

)
T ,ξ

= −p <

0,
(

∂2F
∂V 2

)

T ,ξ
= −

(
∂p

∂V

)

T ,ξ
> 0. So when equilibrium does not shift, the F−V curve

can be shown by broken line in figure 2.
If f shows Helmholz free energy, tn shows volume, then equation (40)

becomes

(
∂2F

∂V 2

)

T

=
(

∂2F

∂V 2

)

T ,ξ

+
(

∂ξ

∂V

)

T

∂

∂ξ

(
∂F

∂V

)

=
(

∂2F

∂V 2

)

T ,ξ

−
(

∂ξ

∂V

)

T

(
∂p

∂ξ

)

T ,V

. (43)

Equation (36) becomes

(
∂2F

∂ξ 2

)

T ,V

(
∂ξ

∂V

)

T

∂

∂ξ

(
∂F

∂V

)

T

< 0 or
(

∂2F

∂ξ 2

)

T ,V

(
∂ξ

∂V

)

T

(
∂p

∂ξ

)

T ,V

> 0

(44)
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owing to
(

∂2F
∂ξ 2

)

T ,V
> 0, so by equation (44) we know that the second term on

the right of equation (43) −
(

∂ξ

∂V

)

T

(
∂p

∂ξ

)

T ,V
< 0 [this is actually the second for-

mula in equation (20)]. So by equation (43) we know that
(

∂2F
∂V 2

)

T
<

(
∂2F
∂V 2

)

T ,ξ
.

Again from equation (30) we obtain

(
∂F

∂V

)

T

=
(

∂F

∂V

)

T ,ξ

= −p < 0. (45)

So when equilibrium shifts, the F − V curve can be shown by the real line in
figure 2.

Under definite volume, the change of Helmholz free energy from the broken
line to the real line in figure 1 is just the change of Helmholz free energy of the
system during the process of isothermal and isochoric reaction (it is negative).
By figure 2 we know that Helmholz free energy of a system decreases with the
increase of volume, and the equilibrium shift in the direction to accelerate the
decrease of Helmholz free energy when the volume increases.

4. Discussion about Le Chatalier’s principle

Now we discuss Le Chatalier’s Principle, and examine whether it is consis-
tent with the real situations or not. Le Chatalier’s Principle can be narrated as
follows:

“If a stress is imposed on a system at equilibrium (change in concentration,
change in temperature, change in pressure), the system will attempt to reduce
that stress by shifting the reaction”[1].

From before-mentioned discussion we know that after T , p and n0
i are

changed, if G increases, an equilibrium will shift in the direction to resist the
increase of Gibbs free energy. This is consistent with Le Chatalier’s Principle. If
G decreases, an equilibrium will shift in the direction to accelerate the decrease
of Gibbs free energy. This is not consistent with Le Chatalier’s Principle.

When temperature is changed,

dH = CpdT +
(

∂H

∂ξ

)

T ,p

dξ = CpdT + �H dξ. (46)

From the first term on the right of equation (46) we know that when tempera-
ture increases, H increases; moreover when temperature increases, an equilibrium
will shift in the direction the reaction is endothermic, viz. �H dξ > 0. So when
temperature increases, the equilibrium will shift in the direction to accelerate the
increase of H . This is not consistent with Le Chatalier’s Principle.
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When temperature is changed,

dS = Cp

T
dT +

(
∂S

∂ξ

)

T ,p

dξ = Cp

T
dT + �H

T
dξ. (47)

So the change of S is not consistent with Le Chatalier’s Principle either.
When the pressure is changed,

dV =
(

∂V

∂p

)

T

dp +
(

∂V

∂ξ

)

T ,p

dξ =
(

∂V

∂p

)

T

dp + �V dξ. (48)

Owing to
(

∂V
∂p

)

T
< 0, so from the first term on the right of equation (48) we

know that when the pressure increases, volume decreases; moreover when the
pressure increases an equilibrium will shift in the direction the volume is reduc-
tive, viz. �V dξ < 0. So when the pressure increases, the equilibrium will shift
in the direction to accelerate the decrease of volume. This is not consistent with
Le Chatalier’s Principle.

When n0
i is changed,

dµi =
∑

j

(
∂µi

∂nj

)

T ,p,nl

dnj =
∑

j

(
∂µi

∂nj

)

T ,p,nl

d
(
n0

j + νj dξ
)

=
∑

j

(
∂µi

∂nj

)

T ,p,nl

dn0
j +

∑

j

νj

(
∂µi

∂nj

)

T ,p,nl

dξ

=
(

∂µi

∂ni

)

T ,p,nl

dn0
i +

∑

j

νj

(
∂µi

∂nj

)

T ,p,nl

dξ

=
(

∂µi

∂ni

)

T ,p,nl

dn0
i +

(
∂µi

∂ξ

)

T ,p

dξ. (49)

(
∂µi

∂ni

)

T ,p,nl

> 0 for stable equilibrium [2]. So from the first term on the right of

equation (49) we know that when n0
i increases, µi increases; moreover when n0

i

increases, an equilibrium will shift in the direction chemical potential is descendent,
viz.

(
∂µi

∂ξ

)

T ,p
dξ < 0. So when n0

i increases, the equilibrium will shift in the direction

to resist the increase of µi . This is consistent with Le Chatalier’s Principle.
An equilibrium will shift in the direction the reaction is endothermic when

temperature increases; by equation (46) we know that if there is not the supply
of heat, the temperature of a system will decreases: dT = −�H dξ

Cp
< 0. So the

change of T is consistent with Le Chatalier’s Principle.
An equilibrium will shift in the direction the number of moles is reductive when

the pressure increase, viz. �V dξ < 0; by equation (48) we know that if the volume
does not change, then the pressure will decrease: dp = −�V dξ

/(
∂V
∂p

)

T
< 0. So

the change of p is consistent with Le Chatalier’s Principle.
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When n0
i increases, if the equilibrium will shift in the direction n0

i is con-
sumed (a majority of cases is so), then this is consistent with Le Chatalier’s Prin-
ciple. But under a minority of cases, when n0

i increases, the equilibrium will shift
in the direction more n0

i is produced [3]. This is not consistent with Le Chata-
lier’s Principle.

We can also make analogous discussion for isothermal and isochoric reac-
tion.

Thus it can be seen that Chatalier’s Principle is not consistent with the real
situations under certain circumstances.

5. Conclusion

5.1.

A generalized formula to predict the direction of an equilibrium shift is
∂2f

∂ξ 2
∂ξ

∂t
∂
∂ξ

(
∂f

∂t

)
< 0, where ξ is the extent of the reaction, t is the characteristic

variable to affect an equilibrium and f is the characteristic function whose par-
tial differential with respect to ξ can be used as an equilibrium criterion.

5.2.

When the stable equilibrium of a thermodynamic system is disturbed on
condition that f exhibits a minimum with respect to ξ , the equilibrium will shift
in the direction to resist the increase of f if the disturbance make f increase;
however, the equilibrium will shift in the direction to accelerate the decrease of f

if the disturbance make f decrease to minimize f . On condition that f exhibits
a maximum with respect to ξ , the equilibrium will shift in the direction to resist
the decrease of f if the disturbance make f decrease; however, the equilibrium
will shift in the direction to accelerate the increase of f if the disturbance make
f increase to maximize f .

5.3.

Le Chatalier’s Principle is not consistent with the real situations under cer-
tain circumstances.
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